

Topics: Factors, Multiples, Prime Numbers

Materials List

- ✓ 100-Chart (see page 2)
- \checkmark 100 tokens
- ✓ Scratch paper

This activity can be used to teach:

- Factors (Common Core Math Standards: Operations & Algebraic Thinking, Grade 4, 4; Grade 5, 2.1; Number System, Grade 6, 4)
- Problem Solving and Reasoning (Common Core Math Standards: Mathematical Practices, Grades 4-8)

Head to One Hundred!

Sift through Multiples & Factors up to 100

Find multiples & factors on a 100-grid board. See how the numbers relate to each other.

Playing the Game (for 1-4 players)

- 1. Player 1 chooses any even number and puts a token on board for that number. Player 2 (or Player 1 for a single player game) chooses any number that is a multiple or a factor of Player 1's number, and puts a token on that number, stating how the two numbers are related. For example: Player 1 chooses 12. Player 2 could choose 1, 2, 3, 4, or 6 (each is a factor of 12). Alternately, Player 2 could choose 24, 36, 48, or any other number less than or equal to 100 that is a multiple of 12.
- 2. Each player takes a turn choosing a new number to cover and states the relationship to the number chosen on the previous turn. A player can choose any uncovered number, as long as the number is either a factor or a multiple of the number chosen in the last turn. (e.g., 3 is a factor of 24, 5 x 7 equals 35). The relationships can only involve whole numbers from 1 to 100.
- 3. Players work cooperatively to cover as many numbers as possible.
- 4. The game is over when no more numbers can be covered. Count the number of covered numbers to determine the score.
- 5. Play several times, thinking about strategies for reaching a higher score. Is there a maximum possible score?

The Math Behind the Activity

This game strengthens understanding of multiples and factors of whole numbers and leads to thinking about choices. A multiple of a number occurs when a number is multiplied by another number (e.g., some multiples of 3 are 6; (3×2) , 15; (3×5) , and 33; (3×11)). Factors are whole numbers that can be multiplied together to obtain another number, (e.g., 3 and 5 are factors of 15). Multiples and factors are useful to know when working with fractions. This game is also a good way for students to start to explore prime numbers.

Taking it Further

• Find prime numbers using Eratosthenes's Sieve: Cover the number 1. Place a token on all multiples of 2, but not on number 2. Place a token on all multiples of 3, but not on number 3. Continue placing a token on all multiples of an odd number; except for the odd number itself. The uncovered numbers are all the primes up to 100!

Web Resources (Visit <u>www.raft.net/raft-idea?isid=610</u> for more resources!)

- Factors/Multiples -http://www.math.com/school/subject1/lessons/S1U3L1GL.html
- The Sieve of Eratosthenes http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
- 100-chart ideas http://letsplaymath.net/2008/09/22/things-to-do-hundred-chart/
- Khan Academy videos www.khanacademy.org/math/arithmetic/factors-multiples

•

•

100 Chart

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

