Ρ	a			

CAFT MAKER JOURNAL

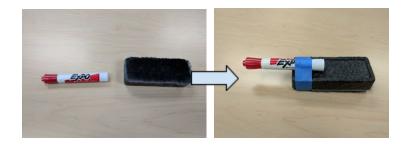
Name:	Date:

Project/Unit: Natural to Synthetic

Lesson: Define, 4 Types of Reaction

Chemical reactions start with **reactants** and end with a new **product**, but the process that shapes the reactants can be quite different. Below is an infographic that shows the 4 different process that reactants go through. Study the infographic and talk it over with a classmate what you think those 4 examples means.

4 Basic Chemical Reaction Four Basic Types of Chemical Reaction Synthesis Decomposition Single Replacement Double Replacement Description Exmaple Synthesis Reactions 2H₂ + O₂ → 2H₂O Elements are joined together. 2H₂O → 2H₂ + O₂ Decomposition Reactions A compound breaks into parts. Single Displacement Reactions A single element replaces an element in a compound. $Zn + 2HCl \rightarrow H_2 + ZnCl_2$ **Double Displacement Reactions** H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O An element from each of two compounds switch places.



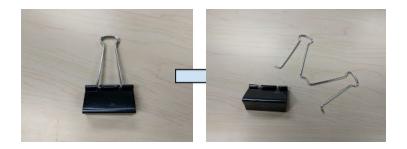
* MAKER JOURNAL

Name:	Date:
-------	-------

Using materials from around classroom and makerspace, your challenge is to create a new product using the **Synthesis** chemical reaction type. Materials used to connect your objects will not be counted as reactants for this exercise.

Example:

Synthesis Reaction					
Example:					
List the two reactants (or objects) you started with: 1.	What new product did you create?				
2.					


Use this area to draw out your design and explain how this is an example of synthesis chemical reaction:

* MAKER JOURNAL

Name:	Date:

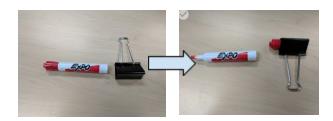
Using materials from around classroom and makerspace, your challenge is create a new product using the **Decomposition** chemical reaction type. Because decomposition chemical reaction only breaks things apart, you will not need any materials used to connect. Example:

Decomposition Reaction

What is the reactant (or object) you started	What parts did you disassemble your reactant
with?	into?

Use this area to draw out your design and explain how this is an example of a decomposition:

Pg		
. 9	•	



Caft MAKER JOURNAL

Name:	Date:
-------	-------

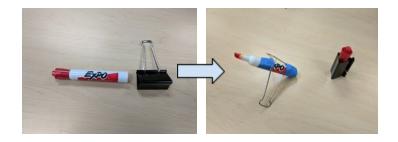
Using materials from around classroom and makerspace, your challenge is to create a new product using the **Single Replacement** chemical reaction type. Materials used to connect two objects will not be counted as reactants.

Example:

Single Replacement Reaction

List the reactants (or materials) you started with:	What is your new product?
2.	
3.	

Use this area to draw out your design and explain how this is an example of a single replacement reaction:


Pa	١.			

Caft MAKER JOURNAL

Name:	Date:

Using materials from around classroom and makerspace, your challenge is create a new product using the **Double Replacement** chemical reaction type. Materials used to bind, tape, and glue will not be counted in the example.

Double Replacement Reaction

List the reactants (or materials) you started with: 1.	What is your new product?
2.	
3 .	
4.	

Use this area to draw out your design and explain how this is an example of double replacement: